Remote Robot Car Control System with RGBD Camera for 3D Reconstruction

Team#21 Members

Yuhao Ge, Junyan Li, Hao Chen, Han Yang

<u>Teaching assistant</u>: Yiqun Niu <u>Sponsor</u>: Prof. Pavel Loskot

ECE445 Senior Design SP23 ZJUI TEAM#21

Problem Statement: Model is Everywhere

Road Mapping

Game Modeling

Augmented/Virtual Reality

Historical Site Digitization

Problem Statement: Challenges

- Flexibility and Safety
 - Some sites are dangerous
 - Some places are difficult to access by human
 - Humans are lazy

- Feasibility
 - Computational payload is high for 3D algorithms
 - Edge devices should be small and have low power consumption

Our Design Focus on

Remote Vehicle Control

Remote Realtime 3D Reconstruction

Combine these Two Functions!

Our Solution

Figure 1: Block Diagram

Figure 2: Robot Car

- **Remote Server Subsystem:** Do the visualization and the 3D-reconstruction
- Communication Subsystem: Works as a communication bridge between the server and the car
- **Robot Car Subsystem:** A car platform that supports omnidirectional movement controlled by a joystick, holds an RGBD camera to gather information

Components

- 1. Car Platform
- 2. RGBD Camera
- 3. Raspberry Pi
- 4. Xbox Joystick
- 5. STM32-based Control Board
- 6. Linear Actuator
- 7. Customized PCB
- 8. Server Computer

Methodology: Remote Control

McNamee Wheels and Motors

 $\begin{bmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \\ \omega_4 \end{bmatrix} = \frac{1}{r} \begin{bmatrix} 1 & -1 & -(l_x + l_y) \\ 1 & 1 & (l_x + l_y) \\ 1 & 1 & -(l_x + l_y) \\ 1 & -1 & (l_x + l_y) \end{bmatrix} \begin{bmatrix} v_x \\ v_y \\ \omega_x \end{bmatrix}.$ $\begin{cases} \omega_1 = \frac{1}{r} (v_x - v_y - (l_x + l_y)\omega), \\ \omega_2 = \frac{1}{r} (v_x + v_y + (l_x + l_y)\omega), \\ \omega_3 = \frac{1}{r} (v_x + v_y - (l_x + l_y)\omega), \\ \omega_4 = \frac{1}{r} (v_x - v_y + (l_x + l_y)\omega). \end{cases}$

Equation 1: Forward Kinetic

18.1	r 1	1	1	1 1	[ω1]
$v_y = \frac{r}{4}$	-1	1	1	-1	ω2
[ω ₂]	(1,+1,)	$\overline{(l_x+l_y)}$	$-\frac{l_x+l_y}{(l_x+l_y)}$	(l_x+l_y)	W4

Longitudinal Velocity:

 $v_x(t) = (\omega_1 + \omega_2 + \omega_3 + \omega_4) \cdot \frac{r}{4}$

Transversal Velocity:

 $v_y(t) = (-\omega_1 + \omega_2 + \omega_3 - \omega_4) \cdot \frac{r}{4}$

Angular velocity:

 $\omega_z(t)=\left(-\omega_1+\omega_2-\omega_3+\omega_4\right),\ \frac{r}{4(l_z+l_r)}$

Equation 2: Backward Kinetic

Methodology: Remote Control

McNamee Wheels and Motors

Left Trigger

Left Button

Start Button

Right Trigger

Right Button

Back Button

Turn Right

Increase Max

Moving Speed

Stop Moving

Turn Left

Decrease Max

Turning Speed

Emits a beep

Methodology: Image Transmission

- Transmit RGB and depth images through WIFI
- Images are compressed using JPEG image compression algorithm on the Raspberry Pi before transmission to save bandwidth.
- The compression rate can reach nearly **10x**, resulting in a significant bandwidth reduction.

Figure 6: Image Compression Workflow

						الشروي معاشرة ا		pi	@r	asp	ber	ryp	i: ~/	cor	mp	res	s_v	vs l	83x	20						
INF0]	[168	4302	2894	. 9	848	04]	1:	RGB	1	mag	e	COM	pri	ess	i r	at	e (э.	12	[1	0	770	54/	/92	16	00]
INF0]	[168	4302	2895	5.6	710	53	1:	RGB	i	mag	e	COP	pr	ess	F T	at	e i	θ.	12	E	0	76	52/	/92	16	00]
INF0]	[168	4302	1896	5.3	714	50	1:	RGB	i	mag	e	COP	pr	ess	F F	at	e	ð.	12	[1	10	768	38)	192	16	00]
INFO]	[168	4302	896	. 9	485	21	:	RGB	i	mag	e	cor	pr	ess	s r	at	e	э.	12	Ē	10	750	59	92	16	00]
INF0]	[168	4302	2897	.4	735	82	1:	RGB	i	mag	e	COP	pr	ess	5 F	at	e	Θ.	12	Ē	0	730	34)	92	16	00]
INF0]	[168	4382	9807	6	853	0.4	•	DGB	4	man	p.	-01	inc	ace	: r	at	e 1	9	12	Ē 1	A)	768	38	192	16	001
INF0]	[168	_			_						_	_	_	_		_			_	_					16	00]
INF0]	[168		and	P					-	č	•		<u> </u>		~	1	۷.	_ /		~	Ť,		~		16	00]
INFO	[168	$\subset 0$	וחכ	рг	es	is	Г	at	:e	0		12		1	07	76	9	2,	/9	2	10	50	0		16	00]
INFOJ	[168	-		-	~~	-	_	-+	-	0		1 2	ì	-	0-	, ,	2	-	10	2	1.	50	0		16	00]
INFO]	[168		וייכ	Ы	es	5		a	.е	0		12	ા	. +	01	1	2	<i>(</i>)	9	۷.	τ¢	00	0		16	00]
INF0]	[168	00	וחוכ	рг	es	S	- 0	at	e	- 0		12		1	07	74	9	3	19	2	1 (50	0		16	00]
INF0]	[168	-									_													4	16	00]
INF0]	[168	4302	906	.8	823	34	:	RGB	i	mag	e	COP	прг	ess	i r	at	e i	Э.	12		0	759	92)	92	16	00]
INF0]	[168	4302	901	. 4	226	85	1:	RGB	1	mag	e	COF	pr	ess	F F	at	e	0.	12	Ē	0	730	32/	192	16	00]
INF0]	[168	4302	2901		673	31	1:	RGB	ŧ	mag	e	cor	рг	ess	5 F	at	e (θ.	12	E	0	780	38	192	16	00]
INF0]	[168	4302	2901	1.9	657	05	:	RGB	i	mag	e	COM	pr	ess	i r	at	e (θ.	12	[1	10	746	37	192	16	00]
INF0]	[168	4302	902	1.3	226	40	:	RGB	1	mag	e	cor	pr	ess	i r	at	e	Θ.	12	Ē	10	762	23/	92	16	00]
INF0]	[168	4302	2902		522	51	:	RGB	i	mag	e	COP	pre	ess	şΓ	at	e (э.	12	[1	10	771	18)	92	16	00]
INFOI	[168	4302	903	1.2	114	86	1:	RGB	1	mag	e	COM	DE	ess	E F	at	e i	θ.	12	Ē	0	736	59	/92	16	001

Figure 7: Image Compression Rate

RTAB-Map: Real-Time Appearance-Based Mapping

CENT

Figure 8: Intro to RTAB-Map

3D Reconstruction Algorithm

- Image Denoising with Mean Filter
- Image Sampling
- Feature Matching
- Trajectory Calculation
- Closure Detection
- Calibration
- Post-Processing

Figure 9: Reconstruction Result

Mechanical Structure

Figure 10: Linear Actuator

Result: Impressive Reconstruction

Result: Strengths

Smooth Control: user can control the car to move in all directions with low delay and the car will response immediately

Bandwidth Saving: Even though we require high resolution images to perform a great result, our compress step save the bandwidth to 25% as original

<u>Real Time Construction</u>: our reconstruction result will be real time with little delay and the final result can be refined with extra time.

User Friendly Interface: our interface shows the current scene of the camera and the reconstruction result. The user can switch from one mode to the other simply press a button.

Result: Weaknesses

<u>High-quality Network Required</u>: since the reconstruction and the control modules are implemented on the remote server, it is crucial to have a good network condition to work.

Plain Background Forbidden: our algorithm is based on the traditional method, and the features are extracted from the color gradient. In this case, the algorithm cannot work with plain background.

Holes In The Point Cloud: Due to height of the camera, the reconstruction may contain some holes since the camera is blocked by the objects. The wall behind the table and the 3d printers are the vivid examples.

Conclusion

- In conclusion, our senior design project has successfully demonstrated the feasibility and efficiency of utilizing an RGBD camera for 3D reconstruction in a robotic car context.
- The methodologies employed, from image denoising and sampling, feature matching and trajectory calculation, to closure detection and calibration, have proved instrumental in achieving high-quality results.
- The precision and accuracy of our 3D reconstruction module have been evidenced in realworld environments, as seen in the lab scene we reconstructed, despite some limitations due to the camera's fixed position.
- These results underscore the robustness and effectiveness of our system, and its potential in fields requiring detailed environmental understanding.

Remote Robot Car Control System with RGBD Camera for 3D Reconstruction

Thank You for Listening! Any Questions?

ECE445 Senior Design SP23 ZJUI TEAM#21